' '
Deutsch | English    

Research Database PMU-SQQUID

Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism.
Meierhofer, D; Mayr, JA; Fink, K; Schmeller, N; Kofler, B; Sperl, W;
Br J Cancer. 2006; 94(2): 268-274.
Originalarbeiten (Zeitschrift)


Kofler Barbara
Mayr Johannes A.
Sperl Wolfgang


Previously, renal cell carcinoma tissues were reported to display a marked reduction of components of the respiratory chain. To elucidate a possible relationship between tumourigenesis and alterations of oxidative phosphorylation, we screened for mutations of the mitochondrial DNA (mtDNA) in renal carcinoma tissues and patient-matched normal kidney cortex. Seven of the 15 samples investigated revealed at least one somatic heteroplasmic mutation as determined by denaturating HPLC analysis (DHPLC). No homoplasmic somatic mutations were observed. Actually, half of the mutations presented a level of heteroplasmy below 25%, which could be easily overlooked by automated sequence analysis. The somatic mutations included four known D-loop mutations, four so far unreported mutations in ribosomal genes, one synonymous change in the ND4 gene and four nonsynonymous base changes in the ND2, COI, ND5 and ND4L genes. One renal cell carcinoma tissue showed a somatic A3243G mutation, which is a known frequent cause of MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episode) and specific compensatory alterations of enzyme activities of the respiratory chain in the tumour tissue. No difference between histopathology and clinical progression compared to the other tumour tissues was observed. In conclusion, the low abundance as well as the frequently observed low level of heteroplasmy of somatic mtDNA mutations indicates that the decreased aerobic energy capacity in tumour tissue seems to be mediated by a general nuclear regulated mechanism.

Useful keywords (using NLM MeSH Indexing)

Base Sequence

Blotting, Western

Carcinoma, Renal Cell/genetics*

Chromatography, High Pressure Liquid

DNA Mutational Analysis

DNA, Mitochondrial/genetics*

DNA, Neoplasm/analysis*


Kidney Neoplasms/genetics*


Oxidative Phosphorylation*

Polymerase Chain Reaction

Von Hippel-Lindau Tumor Suppressor Protein/metabolism

Find related publications in this database (Keywords)

oxidative phosphorylation
mitochondrial encephalomyopathy with lactic acidosis and
stroke-like episodes
denaturing HPLC
mitochondrial DNA mutations
renal cell carcinoma