' '
Deutsch | English    

Forschungsdatenbank PMU-SQQUID

The remyelination Philosopher"s Stone: stem and progenitor cell therapies for multiple sclerosis.
Jadasz, JJ; Aigner, L; Rivera, FJ; Küry, P;
Cell Tissue Res. 2012; 349(1):331-347


Aigner Ludwig
Rivera Gomez-Barris Francisco J.


Multiple sclerosis (MS) is an autoimmune disease that leads to oligodendrocyte loss and subsequent demyelination of the adult central nervous system (CNS). The pathology is characterized by transient phases of recovery during which remyelination can occur as a result of resident oligodendroglial precursor and stem/progenitor cell activation. However, myelin repair efficiency remains low urging the development of new therapeutical approaches that promote remyelination activities. Current MS treatments target primarily the immune system in order to reduce the relapse rate and the formation of inflammatory lesions, whereas no therapies exist in order to regenerate damaged myelin sheaths. During the last few years, several transplantation studies have been conducted with adult neural stem/progenitor cells and glial precursor cells to evaluate their potential to generate mature oligodendrocytes that can remyelinate axons. In parallel, modulation of the endogenous progenitor niche by neural and mesenchymal stem cell transplantation with the aim of promoting CNS progenitor differentiation and myelination has been studied. Here, we summarize these findings and discuss the properties and consequences of the various molecular and cell-mediated remyelination approaches. Moreover, we address age-associated intrinsic cellular changes that might influence the regenerative outcome. We also evaluate the extent to which these experimental treatments might increase the regeneration capacity of the demyelinated human CNS and hence be turned into future therapies.

Useful keywords (using NLM MeSH Indexing)



Models, Biological

Multiple Sclerosis/physiopathology

Multiple Sclerosis/therapy*

Myelin Sheath/metabolism

Myelin Sheath/pathology*

Nerve Regeneration/physiology

Stem Cell Transplantation*

Stem Cells/cytology*

Stem Cells/metabolism

Wound Healing

Find related publications in this database (Keywords)

Multiple sclerosis
Central nervous system
Stem cell therapy
Progenitor cell