' '
Deutsch | English    

Forschungsdatenbank PMU-SQQUID

Smart Artificial Soft Tissue - Application to a Hybrid Simulator for Training of Laryngeal Pacemaker Implantation.
Thurner, T; Esterer, B; Furst, D; Hollensteiner, M; Sandriesser, S; Augat, P; Pruckner, R; Wirthl, D; Kaltenbrunner, M; Muller, A; FOrster, G; Pototschnig, C; Schrempf, A;
IEEE Trans Biomed Eng. 2023; 70(2):735-746
Originalarbeiten (Zeitschrift)


Augat Peter
Hollensteiner Marianne
Sandriesser Sabrina


Surgical simulators are safe and evolving educational tools for developing surgical skills. In particular, virtual and hybrid simulators are preferred due to their detailedness, customization and evaluation capabilities. To accelerate the revolution of a novel class of hybrid simulators, a Smart Artificial Soft Tissue is presented here, that determines the relative position of conductive surgical instruments in artificial soft tissue by inverse resistance mappings without the need for a fixed reference point. This is particularly beneficial for highly deformable structures when specific target regions need to be reached or avoided. The carbon-black-silicone composite used can be shaped almost arbitrarily and its elasticity can be tuned by modifying the silicone base material. Thus, objective positional feedback for haptically correct artificial soft tissue can be ensured. This is demonstrated by the development of a laryngeal phantom to simulate the implantation of laryngeal pacemaker electrodes. Apart from the position-detecting larynx phantom, the simulator uses a tablet computer for the virtual representation of the vocal folds" movements, in accordance with the electrical stimulation by the inserted electrodes. The possibility of displaying additional information about target regions and anatomy is intended to optimize the learning progress and illustrates the extensibility of hybrid surgical simulators.

Useful keywords (using NLM MeSH Indexing)


Vocal Cords



Pacemaker, Artificial*

Computer Simulation

Find related publications in this database (Keywords)

Biological tissues
Haptic interfaces
Principal component analysis
Artificial tissue
hybrid medical simulation
laryngeal pacemaker
electrode positioning
haptical realistic
soft sensor
position detection