' '
Deutsch | English    

Forschungsdatenbank PMU-SQQUID

In vivo bioluminescence imaging of neurogenesis - the role of the blood brain barrier in an experimental model of Parkinson"s disease.
Fricke, IB; Schelhaas, S; Zinnhardt, B; Viel, T; Hermann, S; Couillard-Després, S; Jacobs, AH;
Eur J Neurosci. 2017; 45(7): 975-986.
Originalarbeiten (Zeitschrift)

PMU-Autor/inn/en

Couillard-Després Sébastien

Abstract

Bioluminescence imaging in transgenic mice expressing firefly luciferase in Doublecortin(+) (Dcx) neuroblasts might serve as a powerful tool to study the role of neurogenesis in models of brain injury and neurodegeneration using non-invasive, longitudinal in vivo imaging. Therefore, we aimed to use BLI in B6(Cg)-Tyrc-2J/J Dcx-Luc (Doublecortin-Luciferase, Dcx-Luc) mice to investigate its suitability to assess neurogenesis in a unilateral injection model of Parkinson"s disease. We further aimed to assess the blood brain barrier leakage associated with the intranigral 6-OHDA injection to evaluate its impact on substrate delivery and bioluminescence signal intensity. Two weeks after lesion, we observed an increase in bioluminescence signal in the ipsilateral hippocampal region in both, 6-OHDA and vehicle injected Dcx-Luc mice. At the same time, no corresponding increase in Dcx(+) neuroblast numbers could be observed in the dentate gyrus of C57Bl6 mice. Blood brain barrier leakage was observed in the hippocampal region and in the degenerating substantia nigra of C57Bl6 mice in vivo using T1 weighted Magnetic Resonance Imaging with Gadovist(®) and ex vivo using Evans Blue Fluorescence Reflectance Imaging and mouse Immunoglobulin G staining. Our data suggests a BLI signal dependency on blood brain barrier permeability, underlining a major pitfall of substrate/tracer dependent imaging in invasive disease models. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.


Find related publications in this database (Keywords)

Doublecortin
magnetic resonance
neurodegeneration
optical imaging
substrate delivery